Difference between revisions of "Unit BCM2711"
Line 3,375: | Line 3,375: | ||
<br /> | <br /> | ||
<div class="toccolours mw-collapsible mw-collapsed" style="border: 1; font-family: arial; padding-top: 0px; padding-bottom: 15px;"> | <div class="toccolours mw-collapsible mw-collapsed" style="border: 1; font-family: arial; padding-top: 0px; padding-bottom: 15px;"> | ||
− | <pre style="border: 0; padding-bottom:0px;">function | + | <pre style="border: 0; padding-bottom:0px;">function BCM2711FramebufferSetOffsetEx(Framebuffer:PFramebufferDevice; X,Y:LongWord; Pan,Switch:Boolean):LongWord;</pre> |
− | <div style="font-size: 14px; padding-left: 12px;">'''Description:''' Implementation of | + | <div style="font-size: 14px; padding-left: 12px;">'''Description:''' Implementation of FramebufferDeviceSetOffsetEx API for BCM2711 Framebuffer</div> |
<div class="mw-collapsible-content" style="text-align: left; padding-left: 5px;"> | <div class="mw-collapsible-content" style="text-align: left; padding-left: 5px;"> | ||
{| class="wikitable" style="font-size: 14px; background: white;" | {| class="wikitable" style="font-size: 14px; background: white;" | ||
|- | |- | ||
! Note | ! Note | ||
− | | Not intended to be called directly by applications, use | + | | Not intended to be called directly by applications, use FramebufferDeviceSetOffsetEx instead. |
|- | |- | ||
|} | |} |
Latest revision as of 03:46, 5 September 2023
Return to Unit Reference
Description
Ultibo BCM2711 Interface unit
This unit provides the BCM2711 specific implementations of the following devices:
- SPI0
- SPI1
- SPI2
- SPI3
- SPI4
- SPI5
- SPI6
- I2C0
- I2C1
- I2C2
- I2C3
- I2C4
- I2C5
- I2C6
- I2C7
- I2C Slave
- SPI Slave
- DMA
- PWM0
- PWM1
- PCM
- GPIO
- UART0
- UART1
- UART2
- UART3
- UART4
- UART5
- EMMC0
- EMMC1
- EMMC2
- Clock (System Timer)
- Clock (ARM Timer)
- Clock (Local Timer)
- ARM Timer
- Local Timer
- Random
- Mailbox
- Watchdog
- Framebuffer
BCM2711 SPI0/3/4/5/6 Device
The BCM2711 has 5 master mode SPI controllers that support 3 wire, 2 wire and LoSSI modes of operation. It also has 2 auxiliary SPI masters which do not support DMA mode (see SPI1/2 below).
The main SPI0/3/4/5/6 controllers support polled, interrupt and DMA modes and include 3 chip selects although only CS0 and CS1 are available on the 40 pin header.
The GPIO pins and functions for each device are shown below, not all of these combinations are accessible via the 40 pin header.
Device Line Pin Function Notes SPI0 CS1 GPIO_PIN_7 GPIO_FUNCTION_ALT0 CS0 GPIO_PIN_8 GPIO_FUNCTION_ALT0 MISO GPIO_PIN_9 GPIO_FUNCTION_ALT0 MOSI GPIO_PIN_10 GPIO_FUNCTION_ALT0 SCLK GPIO_PIN_11 GPIO_FUNCTION_ALT0 CS1 GPIO_PIN_35 GPIO_FUNCTION_ALT0 CM4 only CS0 GPIO_PIN_36 GPIO_FUNCTION_ALT0 MISO GPIO_PIN_37 GPIO_FUNCTION_ALT0 MOSI GPIO_PIN_38 GPIO_FUNCTION_ALT0 SCLK GPIO_PIN_39 GPIO_FUNCTION_ALT0 SPI3 CS1 GPIO_PIN_24 GPIO_FUNCTION_ALT5 CS0 GPIO_PIN_0 GPIO_FUNCTION_ALT3 MISO GPIO_PIN_1 GPIO_FUNCTION_ALT3 MOSI GPIO_PIN_2 GPIO_FUNCTION_ALT3 SCLK GPIO_PIN_3 GPIO_FUNCTION_ALT3 SPI4 CS1 GPIO_PIN_25 GPIO_FUNCTION_ALT5 CS0 GPIO_PIN_4 GPIO_FUNCTION_ALT3 MISO GPIO_PIN_5 GPIO_FUNCTION_ALT3 MOSI GPIO_PIN_6 GPIO_FUNCTION_ALT3 SCLK GPIO_PIN_7 GPIO_FUNCTION_ALT3 SPI5 CS1 GPIO_PIN_26 GPIO_FUNCTION_ALT5 CS0 GPIO_PIN_12 GPIO_FUNCTION_ALT3 MISO GPIO_PIN_13 GPIO_FUNCTION_ALT3 MOSI GPIO_PIN_14 GPIO_FUNCTION_ALT3 SCLK GPIO_PIN_15 GPIO_FUNCTION_ALT3 SPI6 CS1 GPIO_PIN_27 GPIO_FUNCTION_ALT5 CS0 GPIO_PIN_18 GPIO_FUNCTION_ALT3 MISO GPIO_PIN_19 GPIO_FUNCTION_ALT3 MOSI GPIO_PIN_20 GPIO_FUNCTION_ALT3 SCLK GPIO_PIN_21 GPIO_FUNCTION_ALT3
BCM2711 I2C0/1/2/3/4/5/6/7 Device
The BCM2711 has 8 Broadcom Serial Controller (BSC) devices which are fast mode (400Kz) I2C masters numbered BSC0 to BSC7 (I2C0 to I2C7).
Devices BSC2 and BSC7 are dedicated to the HDMI interfaces but can be accessed by the ARM processor for controlling some HDMI functionality. All BSC devices contain a 16 byte FIFO, support 7 bit and 10 bit addressing and have software configurable clock timing.
The GPIO pins and functions for each device are shown below, not all of these combinations are accessible via the 40 pin header.
Device Line Pin Function Notes I2C0 SDA0 GPIO_PIN_0 GPIO_FUNCTION_ALT0 SCL0 GPIO_PIN_1 GPIO_FUNCTION_ALT0 SDA0 GPIO_PIN_28 GPIO_FUNCTION_ALT0 SCL0 GPIO_PIN_29 GPIO_FUNCTION_ALT0 SDA0 GPIO_PIN_44 GPIO_FUNCTION_ALT1 SCL0 GPIO_PIN_45 GPIO_FUNCTION_ALT1 I2C1 SDA1 GPIO_PIN_2 GPIO_FUNCTION_ALT0 SCL1 GPIO_PIN_3 GPIO_FUNCTION_ALT0 SDA1 GPIO_PIN_44 GPIO_FUNCTION_ALT2 SCL1 GPIO_PIN_45 GPIO_FUNCTION_ALT2 I2C2 SDA2 Not Applicable SCL2 Not Applicable I2C3 SDA3 GPIO_PIN_2 GPIO_FUNCTION_ALT5 SCL3 GPIO_PIN_3 GPIO_FUNCTION_ALT5 SDA3 GPIO_PIN_4 GPIO_FUNCTION_ALT5 SCL3 GPIO_PIN_5 GPIO_FUNCTION_ALT5 I2C4 SDA4 GPIO_PIN_6 GPIO_FUNCTION_ALT5 SCL4 GPIO_PIN_7 GPIO_FUNCTION_ALT5 SDA4 GPIO_PIN_8 GPIO_FUNCTION_ALT5 SCL4 GPIO_PIN_9 GPIO_FUNCTION_ALT5 I2C5 SDA5 GPIO_PIN_10 GPIO_FUNCTION_ALT5 SCL5 GPIO_PIN_11 GPIO_FUNCTION_ALT5 SDA5 GPIO_PIN_12 GPIO_FUNCTION_ALT5 SCL5 GPIO_PIN_13 GPIO_FUNCTION_ALT5 I2C6 SDA6 GPIO_PIN_0 GPIO_FUNCTION_ALT5 SCL6 GPIO_PIN_1 GPIO_FUNCTION_ALT5 SDA6 GPIO_PIN_22 GPIO_FUNCTION_ALT5 SCL6 GPIO_PIN_23 GPIO_FUNCTION_ALT5 I2C7 SDA7 Not Applicable SCL7 Not Applicable
Note: On the Raspberry Pi 4B the ID EEPROM pins on the 40 pin header are actually connected to GPIO 0 and 1 (I2C0).
BCM2711 SPI1/2 Device
The SPI1/2 devices are part of the AUX device which also includes the UART1 device.
They are master SPI devices which are considered secondary low throughput interfaces as they have small FIFOs and no DMA support.
The GPIO pins and functions for each device are shown below, not all of these combinations are accessible via the 40 pin header.
Device Line Pin Function Notes SPI1 CS2 GPIO_PIN_16 GPIO_FUNCTION_ALT4 CS1 GPIO_PIN_17 GPIO_FUNCTION_ALT4 CS0 GPIO_PIN_18 GPIO_FUNCTION_ALT4 MISO GPIO_PIN_19 GPIO_FUNCTION_ALT4 MOSI GPIO_PIN_20 GPIO_FUNCTION_ALT4 SCLK GPIO_PIN_21 GPIO_FUNCTION_ALT4 SPI2 CS2 GPIO_PIN_45 GPIO_FUNCTION_ALT4 CM4 only CS1 GPIO_PIN_44 GPIO_FUNCTION_ALT4 CS0 GPIO_PIN_43 GPIO_FUNCTION_ALT4 MISO GPIO_PIN_40 GPIO_FUNCTION_ALT4 MOSI GPIO_PIN_41 GPIO_FUNCTION_ALT4 SCLK GPIO_PIN_42 GPIO_FUNCTION_ALT4
Note: The GPIO function assignments section of the BCM2711 ARM Peripherals document incorrectly lists SPI2 as SPI0.
BCM2711 SPI/I2C Slave Device
The slave device can be used as either an I2C or an SPI interface, the I2C slave supports 400KHz fast mode operation. Only 7 bit addressing is supported, DMA is not supported and neither is clock stretching.
Unlike earlier models where the SPI slave device was apparently faulty on the Raspberry Pi 4 it is reported to work.
The GPIO pins and functions for each device are shown below, not all of these combinations are accessible via the 40 pin header.
Device Line Pin Function Notes SPI Slave CS GPIO_PIN_8 GPIO_FUNCTION_ALT3 MISO GPIO_PIN_9 GPIO_FUNCTION_ALT3 MOSI GPIO_PIN_10 GPIO_FUNCTION_ALT3 SCLK GPIO_PIN_11 GPIO_FUNCTION_ALT3
I2C Slave SDA GPIO_PIN_10 GPIO_FUNCTION_ALT3 SCL GPIO_PIN_11 GPIO_FUNCTION_ALT3
Note: The BCM2711 ARM Peripherals document does not include documentation for the I2C/SPI slave.
BCM2711 DMA Device
The DMA controller has 16 channels in total although not all are available for software to use as some are already used by the GPU.
The firmware will pass the value dma.dmachans on the command line which will indicate which channels are available for our use.
Channels 0 to 6 are normal channels which support 2D stride and transfers up to 1GB per control block.
Channels 7 to 10 are Lite channels which do not support stride and only allow transfers up to 64KB per control block.
Channels 11 to 14 are 40 bit channels which allow access to memory and peripherals beyond the 1GB boundary and have higher performance because they directly access the full 35 bit address map and can perform write bursts (DMA channel 11 is used to access the PCIe interface).
Channel 15 is not mentioned in most documentation and is shown as not available in the mask passed in dma.dmachans
Channel 0 and 15 are Bulk channels which have an additional FIFO for faster transfers (8 beat burst per read).
BCM2711 PWM0/1 Device
The BCM2711 has two PWM controllers with 2 independent output bit streams with multiple algorithms for generating the output pulse. The PWM controllers support either a single data register (independent per channel) or a 16 x 32 FIFO which also supports DMA mode transmission.
On the Raspberry Pi 4B PWM1_0 and PWM1_1 are also connected via GPIO pins 40 and 41 to the audio circuit and allow playback of digital audio signals via the 4 pole line jack.
The GPIO pins and functions for each device are shown below, not all of these combinations are accessible via the 40 pin header.
Device Line Pin Function Notes PWM0 PWM0_0 GPIO_PIN_12 GPIO_FUNCTION_ALT0 PWM0_1 GPIO_PIN_13 GPIO_FUNCTION_ALT0 PWM0_0 GPIO_PIN_18 GPIO_FUNCTION_ALT5 PWM0_1 GPIO_PIN_19 GPIO_FUNCTION_ALT5 PWM0_1 GPIO_PIN_45 GPIO_FUNCTION_ALT0 PWM1 PWM1_0 GPIO_PIN_40 GPIO_FUNCTION_ALT0 PWM1_1 GPIO_PIN_41 GPIO_FUNCTION_ALT0
On the Raspberry Pi 4B pins 12, 13, 18 and 19 are exposed on the 40 pin header.
BCM2711 GPIO Device
The GPIO has 54 pins available each with multiple alternate functions. All pins can be configured as input or output and all can have pull up or down applied.
Not all pins are exposed on the 40 pin header of the Raspberry Pi, for details of which pins are available see:
Raspberry Pi 4B - https://www.raspberrypi.org/documentation/usage/gpio/README.md
Some of the 54 pins are used for peripheral communication (such as the SD card) and are not available for general use, take care when changing function selects on pins to avoid disabling certain system peripherals.
Event detection can be enabled for both high and low levels as well as rising and falling edges, there is also an asynchronous rising or falling edge detection which can detect edges of very short duration.
BCM2711 UART0/2/3/4/5 Device
The UART0/2/3/4/5 device is an ARM PL011 UART which supports programmable baud rates, start, stop and parity bits and hardware flow control and many others. The UART0 is similar to the industry standard 16C650 but with a number of differences, the PL011 has some optional features such as IrDA, Serial InfraRed and DMA which are not supported by the Broadcom implementation.
In the standard configuration the UART0 TX and RX lines are connected to GPIO pins 14 and 15 respectively (Alternate function 0) but they can be remapped via GPIO function selects to a number of other locations. On the Raspberry Pi 4B none of these alternate pin mappings are exposed via the 40 pin header and therefore cannot be used easily. This means that UART0 and UART1 cannot be used via the 40 pin header at the same time.
On the Raspberry Pi 4B the UART0 can be mapped to GPIO pins 32 and 33 (Alternate function 3) to communicate with the built in Bluetooth module.
The GPIO pins and functions for each device are shown below, not all of these combinations are accessible via the 40 pin header.
Device Line Pin Function Notes UART0 TXD GPIO_PIN_14 GPIO_FUNCTION_ALT0 RXD GPIO_PIN_15 GPIO_FUNCTION_ALT0 CTS GPIO_PIN_16 GPIO_FUNCTION_ALT3 RTS GPIO_PIN_17 GPIO_FUNCTION_ALT3 TXD GPIO_PIN_32 GPIO_FUNCTION_ALT3 RXD GPIO_PIN_33 GPIO_FUNCTION_ALT3 CTS GPIO_PIN_30 GPIO_FUNCTION_ALT3 RTS GPIO_PIN_31 GPIO_FUNCTION_ALT3 TXD GPIO_PIN_36 GPIO_FUNCTION_ALT2 RXD GPIO_PIN_37 GPIO_FUNCTION_ALT2 CTS GPIO_PIN_38 GPIO_FUNCTION_ALT2 RTS GPIO_PIN_39 GPIO_FUNCTION_ALT2 UART2 TXD GPIO_PIN_0 GPIO_FUNCTION_ALT4 RXD GPIO_PIN_1 GPIO_FUNCTION_ALT4 CTS GPIO_PIN_2 GPIO_FUNCTION_ALT4 RTS GPIO_PIN_3 GPIO_FUNCTION_ALT4 UART3 TXD GPIO_PIN_4 GPIO_FUNCTION_ALT4 RXD GPIO_PIN_5 GPIO_FUNCTION_ALT4 CTS GPIO_PIN_6 GPIO_FUNCTION_ALT4 RTS GPIO_PIN_7 GPIO_FUNCTION_ALT4 UART4 TXD GPIO_PIN_8 GPIO_FUNCTION_ALT4 RXD GPIO_PIN_9 GPIO_FUNCTION_ALT4 CTS GPIO_PIN_10 GPIO_FUNCTION_ALT4 RTS GPIO_PIN_11 GPIO_FUNCTION_ALT4 UART5 TXD GPIO_PIN_12 GPIO_FUNCTION_ALT4 RXD GPIO_PIN_13 GPIO_FUNCTION_ALT4 CTS GPIO_PIN_14 GPIO_FUNCTION_ALT4 RTS GPIO_PIN_15 GPIO_FUNCTION_ALT4
BCM2711 UART1 Device
The UART1 device is a Broadcom implementation that is part of the AUX device which also includes the SPI1 and SPI2 devices.
This device is termed a Mini UART and has a smaller feature set than the PL011 UART but still supports a fairly standard communication protocol with programmable baud rate and hardware flow control.
The Mini UART is similar to the standard 16550 device but is missing some of the features, the device also has no DMA support so high speed transfers will produce a higher CPU load.
In the standard configuration the UART1 TX and RX lines are connected to GPIO pins 14 and 15 respectively (Alternate function 5) but they can be remapped via GPIO function selects to a number of other locations.
On the Raspberry Pi 4B none of these alternate pin mappings are exposed via the 40 pin header and therefore cannot be used easily. This means that UART0 and UART1 cannot be used via the 40 pin header at the same time.
On the Raspberry Pi 4B the UART1 can be mapped to GPIO pins 32 and 33 (Alternate function 5) to communicate with the built in Bluetooth module.
The GPIO pins and functions for the device are shown below, not all of these combinations are accessible via the 40 pin header.
Device Line Pin Function Notes UART1 TXD GPIO_PIN_14 GPIO_FUNCTION_ALT5 RXD GPIO_PIN_15 GPIO_FUNCTION_ALT5 CTS GPIO_PIN_16 GPIO_FUNCTION_ALT5 RTS GPIO_PIN_17 GPIO_FUNCTION_ALT5 TXD GPIO_PIN_32 GPIO_FUNCTION_ALT5 RXD GPIO_PIN_33 GPIO_FUNCTION_ALT5 CTS GPIO_PIN_30 GPIO_FUNCTION_ALT5 RTS GPIO_PIN_31 GPIO_FUNCTION_ALT5
BCM2711 EMMC0 (SDHCI) Device
The SDHCI controller on the BCM2711 is an Arasan SD Host controller.
The Card Detect pin is not connected.
The Write Protect pin is not connected.
The device can be routed to GPIO pins 22 to 27 (ALT3) or 48 to 53 (ALT3), it can also be routed to GPIO pins 34 to 39 (ALT3) to provide an SDIO controller for the on board WiFi.
BCM2711 EMMC1 (SDHOST) Device
The SDHOST controller on the BCM2711 is a non SDHCI-compliant device which requires a specific driver.
It can be routed to GPIO pins 22 to 27 (ALT0) or 48 to 53 (ALT0) however only 22 to 27 are accessible to use.
Note: The actual driver is implemented in the BCMSDHOST unit
BCM2711 EMMC2 (SDHCI) Device
The EMMC2 controller on the BCM2711 is an SDHCI-compliant device which does not appear on the GPIO pins and is internally connected to the SD card slot.
The BCM2838_GPPINMUX register allows routing the SDHCI controller (EMMC0) to the SD card slot which then renders the EMMC2 unusable.
BCM2711 Clock (System Timer) Device
The clock device in the BCM2711 is based on the System Timer which is a 64 bit free running counter that runs at 1MHz regardless of core or CPU clock speeds. The System Timer cannot be stopped and the counter cannot be set or reset.
The System Timer includes 4 compare registers which can each generate an interrupt when the compare value is matched, however 2 of the 4 are consumed by the GPU and on the Raspberry Pi A/B/A+/B+/Zero the other 2 are used for the scheduler and clock interrupts in Ultibo.
This device simply exposes the free running counter as a clock value and does not provide access to the timer compare functionality or to interrupt based events, for those see the timer devices below.
BCM2711 Clock (ARM Timer) Device
This device represents that free running counter from the ARM Timer device (below) as a clock device. The free running counter does not appear in the original SP804 timer. The counter is 32 bits wide and has its own divider that is 8 bits wide meaning that it can be set to clock rates of between 975KHz and 250MHz (or 1.5MHz to 400MHz on the Raspberry Pi 3B).
The counter does not generate an interrupt and cannot be set or reset but it can be stopped and started.
BCM2711 ARM Timer Device
The ARM Timer device in the BCM2711 is based on the ARM SP804 timer with some modifications and additions. In the Raspberry Pi it is connected to the core clock which by default is 250MHz but was increased to 400MHz on the Raspberry Pi 3B.
The divider is 10 bits wide which means that the ARM Timer can be set to clock rates of between 250KHz and 250MHz (or 400KHz to 400MHz on the Raspberry Pi 3B). Both the counter and the load/reload value are 32 bits wide by default giving a wide range of tick intervals.
The ARM Timer features a free running counter which is not enabled or used by this driver and a down counter which operates in wrapping mode so that each time it reaches 0 it triggers an interrupt and reloads the value from a load or reload register to begin counting again.
Constants
BCM2711_SPI0_*
BCM2711_SPI0_DESCRIPTION = 'BCM2838 Master SPI';
|
|
BCM2711_SPI0_MAX_SIZE = $FFFF;
|
|
BCM2711_SPI0_MIN_CLOCK = 7629;
|
Default minimum based on the default settings from the firmware (Recalculated during open) |
BCM2711_SPI0_MAX_CLOCK = 250000000;
|
Default maximum based on the default settings from the firmware (Recalculated during open) |
BCM2711_SPI0_MIN_DIVIDER = 2;
|
Divider is always rounded down to an even number and a value of 0 sets the divider to 65536 |
BCM2711_SPI0_MAX_DIVIDER = $FFFE;
|
Divider is always rounded down to an even number |
BCM2711_SPI0_CORE_CLOCK = 500000000;
|
Default core clock based on the default settings from the firmware (Requested from firmware during start) |
BCM2711_SPI0_MODE_IRQ = 0;
|
|
BCM2711_SPI0_MODE_DMA = 1;
|
|
BCM2711_SPI0_MODE_PIO = 2;
|
BCM2711_I2C0_*
BCM2711_I2C0_DESCRIPTION = 'BCM2838 Master I2C';
|
|
BCM2711_I2C0_MAX_SIZE = $FFFF;
|
|
BCM2711_I2C0_MIN_CLOCK = 7629;
|
Default minimum based on the default settings from the firmware (Recalculated during open) |
BCM2711_I2C0_MAX_CLOCK = 250000000;
|
Default maximum based on the default settings from the firmware (Recalculated during open) |
BCM2711_I2C0_DEFAULT_CLOCK = 100000;
|
|
BCM2711_I2C0_MIN_DIVIDER = 2;
|
Divider is always rounded down to an even number and a value of 0 sets the divider to 32768 |
BCM2711_I2C0_MAX_DIVIDER = $FFFE;
|
Divider is always rounded down to an even number |
BCM2711_I2C0_CORE_CLOCK = 500000000;
|
Default core clock based on the default settings from the firmware (Requested from firmware during start) |
BCM2711_I2C0_MODE_WRITE = 0;
|
|
BCM2711_I2C0_MODE_READ = 1;
|
BCM2711_SPI*_*
BCM2711_SPI1_DESCRIPTION = 'BCM2838 AUX Master SPI1';
|
|
BCM2711_SPI2_DESCRIPTION = 'BCM2838 AUX Master SPI2';
|
BCM2711_*SLAVE_*
BCM2711_I2CSLAVE_DESCRIPTION = 'BCM2838 I2C Slave';
|
|
BCM2711_SPISLAVE_DESCRIPTION = 'BCM2838 SPI Slave';
|
|
BCM2711_I2CSLAVE_TIMEOUT = 10;
|
Timeout (Milliseconds) for RX/TX wait data |
BCM2711_I2CSLAVE_BUFFER_SIZE = 1024;
|
Size in bytes of the RX/TX data buffer |
BCM2711_I2CSLAVE_RX_POLL_LIMIT = 256;
|
Number of times interrupt handler may poll the read FIFO |
BCM2711_DMA_*
BCM2711_DMA_DESCRIPTION = 'BCM2838 DMA';
|
|
BCM2711_DMA_CHANNEL_COUNT = 16;
|
Total number of DMA channels (Not all are usable) |
BCM2711_DMA_40_CHANNELS = $7800;
|
Mask of 40 bit channels (11 to 14) |
BCM2711_DMA_LITE_CHANNELS = $0780;
|
Mask of Lite channels (7 to 10) |
BCM2711_DMA_NORMAL_CHANNELS = $007E; {807F}
|
Mask of normal channels (1 to 6) |
BCM2711_DMA_BULK_CHANNELS = $8001;
|
Mask of Bulk channels (0 and 15) |
BCM2711_DMA_SHARED_CHANNELS = $0780;
|
Mask of channels with shared interrupt (7 to 10) |
BCM2711_DMA_MAX_40_TRANSFER = 1073741824;
|
Maximum transfer length for a 40 bit channel |
BCM2711_DMA_MAX_LITE_TRANSFER = 65536;
|
Maximum transfer length for a Lite channel |
BCM2711_DMA_MAX_NORMAL_TRANSFER = 1073741824;
|
Maximum transfer length for a normal channel |
BCM2711_DMA_MAX_STRIDE = $FFFF;
|
Maximum stride value (Increment between rows) Note this is a signed value (Min -32768 / Max 32767) |
BCM2711_DMA_MAX_Y_COUNT = $3FFF;
|
Maximum number of X length transfers in 2D stride |
BCM2711_DMA_MAX_X_LENGTH = $FFFF;
|
Maximum X transfer length in 2D stride |
BCM2711_DMA_CB_ALIGNMENT = 32;
|
Alignment required for DMA control blocks |
BCM2711_DMA_40_BURST_LENGTH = 16;
|
Burst length for 40 bit channels |
BCM2711_DMA_LITE_BURST_LENGTH = 2;
|
Burst length for DMA Lite channels |
BCM2711_DMA_NORMAL_BURST_LENGTH = 4;
|
Burst length for normal channels |
BCM2711_DMA_BULK_BURST_LENGTH = 16;
|
Burst length for DMA Bulk channels |
BCM2711_DMA_REQUIRE_40_ADDRESS = SIZE_1G;
|
DMA transfers to or from address above 1GB require a 40-bit channel |
BCM2711_DMA_40_PERIPHERAL_OFFSET = 4;
|
40 bit DMA channels use the "Full 35-bit address map" and must access peripherals at 0x4:7C000000 - 0x4:7FFFFFFF |
BCM2711_DMA_40_PERIPHERAL_IO_BASE = BCM2838_EXT_PERIPHERALS_BASE;
|
|
BCM2711_DMA_40_PERIPHERAL_IO_ALIAS = $7C000000;
|
|
BCM2711_DMA_40_PERIPHERAL_IO_MASK = $03FFFFFF;
|
BCM2711_PWM0_*
BCM2711_PWM0_DESCRIPTION = 'BCM2838 PWM';
|
|
BCM2711_PWM0_MIN_PERIOD = 38;
|
Default based on 54MHz PWM clock (Oscillator source) |
BCM2711_PWM0_DEFAULT_CLOCK = 54000000;
|
Default to the 54MHz oscillator clock |
BCM2711_GPIO_*
BCM2711_GPIO_DESCRIPTION = 'BCM2838 GPIO';
|
|
BCM2711_GPIO_MIN_PIN = GPIO_PIN_0;
|
|
BCM2711_GPIO_MAX_PIN = GPIO_PIN_57;
|
|
BCM2711_GPIO_MAX_LEVEL = GPIO_LEVEL_HIGH;
|
|
BCM2711_GPIO_MAX_PULL = GPIO_PULL_DOWN;
|
|
BCM2711_GPIO_MIN_FUNCTION = GPIO_FUNCTION_IN;
|
|
BCM2711_GPIO_MAX_FUNCTION = GPIO_FUNCTION_ALT5;
|
|
BCM2711_GPIO_MIN_TRIGGER = GPIO_TRIGGER_LOW;
|
|
BCM2711_GPIO_MAX_TRIGGER = GPIO_TRIGGER_ASYNC_FALLING;
|
|
BCM2711_GPIO_PULL_MAP:array[GPIO_PULL_NONE..GPIO_PULL_DOWN] of LongWord = (BCM2838_GPPUD_NONE, BCM2838_GPPUD_UP, BCM2838_GPPUD_DOWN);
|
GPIO pull up/down to BCM2838 pull up/down |
BCM2711_GPIO_PULL_UNMAP:array[BCM2838_GPPUD_NONE..BCM2838_GPPUD_DOWN] of LongWord = (GPIO_PULL_NONE, GPIO_PULL_UP, GPIO_PULL_DOWN);
|
BCM2838 pull up/down to GPIO pull up/down |
GPIO functions to BCM2838 functions | |
BCM2711_GPIO_FUNCTION_MAP:array[BCM2711_GPIO_MIN_FUNCTION..BCM2711_GPIO_MAX_FUNCTION] of LongWord = (BCM2838_GPFSEL_IN, BCM2838_GPFSEL_OUT, BCM2838_GPFSEL_ALT0, BCM2838_GPFSEL_ALT1, BCM2838_GPFSEL_ALT2, BCM2838_GPFSEL_ALT3, BCM2838_GPFSEL_ALT4, BCM2838_GPFSEL_ALT5);
| |
BCM2838 functions to GPIO functions | |
BCM2711_GPIO_FUNCTION_UNMAP:array[BCM2711_GPIO_MIN_FUNCTION..BCM2711_GPIO_MAX_FUNCTION] of LongWord = (GPIO_FUNCTION_IN, GPIO_FUNCTION_OUT, GPIO_FUNCTION_ALT5, GPIO_FUNCTION_ALT4, GPIO_FUNCTION_ALT0, GPIO_FUNCTION_ALT1, GPIO_FUNCTION_ALT2, GPIO_FUNCTION_ALT3);
| |
GPIO triggers to BCM2838 event registers | |
BCM2711_GPIO_TRIGGER_MAP:array[BCM2711_GPIO_MIN_TRIGGER..BCM2711_GPIO_MAX_TRIGGER] of LongWord = (BCM2838_GPLEN0, BCM2838_GPHEN0, BCM2838_GPREN0, BCM2838_GPFEN0, BCM2838_GPAREN0, BCM2838_GPAFEN0);
|
BCM2711_UART0_*
BCM2711_UART0_DESCRIPTION = 'BCM2838 PL011 UART';
|
|
BCM2711_UART0_MIN_BAUD = 300;
|
Default minimum of 300 baud |
BCM2711_UART0_MAX_BAUD = 187500;
|
Default maximum based on the default settings from the firmware (Recalculated during open) |
BCM2711_UART0_MIN_DATABITS = SERIAL_DATA_5BIT;
|
|
BCM2711_UART0_MAX_DATABITS = SERIAL_DATA_8BIT;
|
|
BCM2711_UART0_MIN_STOPBITS = SERIAL_STOP_1BIT;
|
|
BCM2711_UART0_MAX_STOPBITS = SERIAL_STOP_2BIT;
|
|
BCM2711_UART0_MAX_PARITY = SERIAL_PARITY_EVEN;
|
|
BCM2711_UART0_MAX_FLOW = SERIAL_FLOW_RTS_CTS;
|
|
BCM2711_UART0_CLOCK_RATE = 3000000;
|
Default clock rate based on the default settings from the firmware (Requested from firmware during open) |
BCM2711_UART0_RX_POLL_LIMIT = 256;
|
Number of times interrupt handler may poll the read FIFO |
BCM2711_UART0_RX_BUFFER_SIZE = 1024;
|
BCM2711_UART1_*
BCM2711_UART1_DESCRIPTION = 'BCM2838 AUX UART1';
|
BCM2711_EMMC0_*
BCM2711_EMMC0_DESCRIPTION = 'BCM2838 Arasan SD Host';
|
|
BCM2711_EMMC0_MIN_FREQ = 400000;
|
Default minimum of 400KHz |
BCM2711_EMMC0_MAX_FREQ = 250000000;
|
Default clock rate based on the default settings from the firmware (Requested from firmware during start) |
BCM2711_EMMC1_*
BCM2711_EMMC1_DESCRIPTION = 'BCM2838 SDHOST';
|
|
BCM2711_EMMC1_MIN_FREQ = 400000;
|
Default minimum of 400KHz |
BCM2711_EMMC1_MAX_FREQ = 200000000;
|
Default clock rate based on the default settings from the firmware (Requested from firmware during start) |
See: BCMSDHOST for the driver implementation |
BCM2711_EMMC2_*
BCM2711_EMMC2_DESCRIPTION = 'BCM2838 SDHCI';
|
|
BCM2711_EMMC2_MIN_FREQ = 400000;
|
Default minimum of 400KHz |
BCM2711_EMMC2_MAX_FREQ = 250000000;
|
Default clock rate based on the default settings from the firmware (Requested from firmware during start) |
BCM2711_SYS_CLOCK_*
BCM2711_SYS_CLOCK_DESCRIPTION = 'BCM2838 System Timer Clock';
|
BCM2711_ARM_CLOCK_*
BCM2711_ARM_CLOCK_DESCRIPTION = 'BCM2838 ARM Timer Clock';
|
|
BCM2711_ARM_CLOCK_MIN_RATE = 976562;
|
Default minimum (Divider 255) based on the default settings from the firmware (Recalculated during start) |
BCM2711_ARM_CLOCK_MAX_RATE = 250000000;
|
Default maximum (Divider 0) based on the default settings from the firmware (Recalculated during start) |
BCM2711_ARM_CLOCK_DEFAULT_RATE = 3968253;
|
Default rate (Divider 62) based on the default settings from the firmware (Recalculated during start) |
BCM2711_ARM_CLOCK_MIN_DIVIDER = 0;
|
|
BCM2711_ARM_CLOCK_MAX_DIVIDER = 255;
|
|
BCM2711_ARM_CLOCK_DEFAULT_DIVIDER = 62;
|
|
BCM2711_ARM_CLOCK_CORE_CLOCK = 250000000;
|
Default core clock based on the default settings from the firmware (Requested from firmware during start) |
BCM2711_LOCAL_CLOCK_*
BCM2711_LOCAL_CLOCK_DESCRIPTION = 'BCM2838 Local Timer Clock';
|
BCM2711_ARM_TIMER_*
BCM2711_ARM_TIMER_DESCRIPTION = 'BCM2838 ARM Timer';
|
|
BCM2711_ARM_TIMER_MIN_RATE = 244140;
|
Default minimum (Divider 1023) based on the default settings from the firmware (Recalculated during start) |
BCM2711_ARM_TIMER_MAX_RATE = 250000000;
|
Default maximum (Divider 0) based on the default settings from the firmware (Recalculated during start) |
BCM2711_ARM_TIMER_DEFAULT_RATE = 1000000;
|
Default rate (Divider 249) based on the default settings from the firmware (Recalculated during start) |
BCM2711_ARM_TIMER_MIN_INTERVAL = 1;
|
|
BCM2711_ARM_TIMER_MAX_INTERVAL = $FFFFFFFF;
|
|
BCM2711_ARM_TIMER_MIN_DIVIDER = 0;
|
|
BCM2711_ARM_TIMER_MAX_DIVIDER = 1023;
|
|
BCM2711_ARM_TIMER_DEFAULT_DIVIDER = 249;
|
|
BCM2711_ARM_TIMER_CORE_CLOCK = 250000000;
|
Default core clock based on the default settings from the firmware (Requested from firmware during start) |
BCM2711_LOCAL_TIMER_*
BCM2711_LOCAL_TIMER_DESCRIPTION = 'BCM2838 Local Timer';
|
BCM2711_RANDOM_*
BCM2711_RANDOM_DESCRIPTION = 'BCM2838 Random Number Generator (RNG200)';
|
|
BCM2711_RANDOM_WARMUP_COUNT = $00040000;
|
The initial numbers generated are "less random" so will be discarded |
BCM2711_MAILBOX_*
BCM2711_MAILBOX_DESCRIPTION = 'BCM2838 Mailbox';
|
BCM2711_WATCHDOG_*
BCM2711_WATCHDOG_DESCRIPTION = 'BCM2838 Watchdog Timer';
|
BCM2711_FRAMEBUFFER_*
BCM2711_FRAMEBUFFER_DESCRIPTION = 'BCM2838 Framebuffer';
|
|
NAME_
|
Type definitions
BCM2711 SPI0/3/4/5/6
PBCM2711SPI0Device = ^TBCM2711SPI0Device;
TBCM2711SPI0Device = record
SPI Properties | |
SPI:TSPIDevice;
|
|
BCM2711 Properties | |
Id:LongWord;
|
Id of this device (0/3/4/5/6) |
IRQ:LongWord;
|
IRQ of this device |
Address:Pointer;
|
Device register base address |
CoreClock:LongWord;
|
Core clock rate |
MOSIPin:LongWord;
|
GPIO pin for the MOSI line |
MISOPin:LongWord;
|
GPIO pin for the MISO line |
CS0Pin:LongWord;
|
GPIO pin for the CS0 line |
CS1Pin:LongWord;
|
GPIO pin for the CS1 line |
CS2Pin:LongWord;
|
GPIO pin for the CS2 line |
SCLKFunction:LongWord;
|
GPIO function for the SCLK line |
MOSIFunction:LongWord;
|
GPIO function for the MOSI line |
MISOFunction:LongWord;
|
GPIO function for the MISO line |
CS0Function:LongWord;
|
GPIO function for the CS0 line |
CS1Function:LongWord;
|
GPIO function for the CS1 line |
CS2Function:LongWord;
|
GPIO function for the CS2 line |
Transfer Properties | |
Mode:LongWord;
|
Mode of current transfer (BCM2711_SPI0_MODE_IRQ / BCM2711_SPI0_MODE_DMA / BCM2711_SPI0_MODE_PIO) |
Source:Pointer;
|
Pointer to the source for current transfer (nil if reading only) |
Dest:Pointer;
|
Pointer to the destination for current transfer (nil if writing only) |
Count:LongWord;
|
Count of bytes for current transfer |
SourceRemain:LongWord;
|
Source bytes remaining for current transfer |
DestRemain:LongWord;
|
Destination bytes remaining for current transfer |
Statistics Properties | |
InterruptCount:LongWord;
|
Number of interrupt requests received by the device |
BCM2711 I2C0/1/2/3/4/5/6/7
PBCM2711I2C0Device = ^TBCM2711I2C0Device;
TBCM2711I2C0Device = record
I2C Properties | |
I2C:TI2CDevice;
|
|
BCM2711 Properties | |
Id:LongWord;
|
Id of this device (0/1/3/4/5/6) |
IRQ:LongWord;
|
IRQ of this device |
Address:Pointer;
|
Device register base address |
CoreClock:LongWord;
|
Core clock rate |
SDAPin:LongWord;
|
GPIO pin for the SDA line |
SCLPin:LongWord;
|
GPIO pin for the SCL line |
SDAFunction:LongWord;
|
GPIO function for the SDA line |
SCLFunction:LongWord;
|
GPIO function for the SCL line |
Transfer Properties | |
Mode:LongWord;
|
Mode of current transfer (BCM2711_I2C0_MODE_WRITE / BCM2711_I2C0_MODE_READ) |
Data:Pointer;
|
Pointer to the data for current transfer |
Count:LongWord;
|
Count of bytes for current transfer |
Remain:LongWord;
|
Bytes remaining for current transfer |
Error:LongBool;
|
True if an error occurred during the transfer |
Statistics Properties | |
InterruptCount:LongWord;{
|
Number of interrupt requests received by the device |
BCM2711 SPI1/2 (AUX)
PBCM2711SPI1Device = ^TBCM2711SPI1Device;
TBCM2711SPI1Device = record
SPI Properties | |
SPI:TSPIDevice;
|
|
BCM2711 Properties | |
Address:Pointer;
|
Device register base address |
CoreClock:LongWord;
|
Core clock rate |
Transfer Properties | |
BCM2711 I2c slave buffer
PBCM2711I2CSlaveBuffer = ^TBCM2711I2CSlaveBuffer;
TBCM2711I2CSlaveBuffer = record
Wait:TSemaphoreHandle;
|
Data ready semaphore |
Start:LongWord;
|
Index of first available buffer entry |
Count:LongWord;
|
Number of available entries in the buffer |
Buffer:array[0..(BCM2711_I2CSLAVE_BUFFER_SIZE - 1)] of Byte;
|
BCM2711 I2c slave
PBCM2711I2CSlave = ^TBCM2711I2CSlave;
TBCM2711I2CSlave = record
I2C Properties | |
I2C:TI2CDevice;
|
|
BCM2711 Properties | |
IRQ:LongWord;
|
IRQ of this device |
Address:Pointer;
|
Device register base address |
Lock:TSpinHandle;
|
Device lock (Differs from lock in I2C device) (Spin lock due to use by interrupt handler) |
SDAPin:LongWord;
|
GPIO pin for the SDA line |
SCLPin:LongWord;
|
GPIO pin for the SCL line |
SDAFunction:LongWord;
|
GPIO function for the SDA line |
SCLFunction:LongWord;
|
GPIO function for the SCL line |
Transfer Properties | |
Receive:TBCM2711I2CSlaveBuffer;
|
Receive Data Buffer |
Transmit:TBCM2711I2CSlaveBuffer;
|
Transmit Data Buffer |
Statistics Properties | |
InterruptCount:LongWord;
|
Number of interrupt requests received by the device |
BCM2711 DMA
PBCM2711DMAHost = ^TBCM2711DMAHost;
TBCM2711DMAHost = record
DMA Properties | |
DMA:TDMAHost;
|
|
BCM2711 Properties | |
ChannelMask:LongWord;
|
Mask of available channels (Passed from GPU firmware) |
ChannelFree:LongWord;
|
Bitmap of current free channels |
ChannelLock:TMutexHandle;
|
Lock for access to ChannelFree |
ChannelWait:TSemaphoreHandle;
|
Number of free normal channels in ChannelFree |
Channel40:TSemaphoreHandle;
|
Number of free 40 bit channels in ChannelFree |
ChannelLite:TSemaphoreHandle;
|
Number of free DMA Lite channels in ChannelFree |
ChannelBulk:TSemaphoreHandle;
|
Number of free DMA Bulk channels in ChannelFree |
Channels:array[0..BCM2711_DMA_CHANNEL_COUNT - 1] of TBCM2711DMAChannel;
|
Channel information for each DMA channel on the host |
EnableRegister:PLongWord;
|
|
InterruptRegister:PLongWord;
|
|
Statistics Properties | |
InterruptCount:LongWord;
|
Number of interrupt requests received by the host controller |
BCM2711 DMA channel
PBCM2711DMAChannel = ^TBCM2711DMAChannel;
TBCM2711DMAChannel = record
Host:PBCM2711DMAHost;
|
DMA host this channel belongs to |
Request:PDMARequest;
|
Current DMA request pending on this channel (or nil of no request is pending) |
Number:LongWord;
|
The channel number of this channel |
Interrupt:LongWord;
|
The interrupt number of this channel |
Registers:PBCM2838DMARegisters;
|
The channel registers for configuration |
Registers40:PBCM2838DMA40Registers;
|
The 40 bit channel registers for configuration |
BCM2711 PWM0/1 device
PBCM2711PWM0Device = ^TBCM2711PWM0Device;
TBCM2711PWM0Device = record
PWM Properties | |
PWM:TPWMDevice;
|
|
BCM2711 Properties | |
Id:LongWord;
|
Id of this device (0/1) |
Address:Pointer;
|
Device register base address |
Channel:LongWord;
|
Channel for this device |
Scaler:LongWord;
|
Scaler for Duty cycle and Period |
Pair:PBCM2711PWM0Device;
|
The paired PWM device for the other channel |
Audio Properties | |
Audio:PBCM2711PWM0Audio;
|
The associated PWM Audio device |
BCM2711 PWM0/1 audio
PBCM2711PWM0Audio = ^TBCM2711PWM0Audio;
TBCM2711PWM0Audio = record
Audio Properties | |
Audio:TAudioDevice;
|
|
BCM2711 Properties | |
PWM Properties | |
PWM0:PBCM2711PWM0Device;
|
The PWM device for channel 0 |
PWM1:PBCM2711PWM0Device;
|
The PWM device for channel 1 |
BCM2711 GPIO
PBCM2711GPIOBank = ^TBCM2711GPIOBank;
TBCM2711GPIOBank = record
GPIO:PGPIODevice;
|
|
Bank:LongWord;
|
|
Address:PtrUInt;
|
|
PinStart:LongWord;
|
BCM2711 GPIO device
PBCM2711GPIODevice = ^TBCM2711GPIODevice;
TBCM2711GPIODevice = record
GPIO Properties | |
GPIO:TGPIODevice;
|
|
BCM2711 Properties | |
Lock:TSpinHandle;
|
Device lock (Differs from lock in Device portion) (Spin lock due to use by interrupt handler) |
Banks:array[0..BCM2838_GPIO_BANK_COUNT - 1] of TBCM2711GPIOBank;
|
|
Statistics Properties | |
InterruptCount:LongWord;
|
Number of interrupt requests received by the device |
BCM2711 UART0/2/3/4/5
PBCM2711UART0Device = ^TBCM2711UART0Device;
TBCM2711UART0Device = record
UART Properties | |
UART:TUARTDevice;
|
|
BCM2711 Properties | |
Id:LongWord;
|
Id of this device (0/2/3/4/5) |
IRQ:LongWord;
|
IRQ of this device |
Lock:TSpinHandle;
|
Device lock (Differs from lock in UART device) (Spin lock due to use by interrupt handler) |
Address:Pointer;
|
Device register base address |
ClockRate:LongWord;
|
Device clock rate |
TXDPin:LongWord;
|
GPIO pin for the TXD line |
RXDPin:LongWord;
|
GPIO pin for the RXD line |
CTSPin:LongWord;
|
GPIO pin for the CTS line |
RTSPin:LongWord;
|
GPIO pin for the RTS line |
TXDFunction:LongWord;
|
GPIO function for the TXD line |
RXDFunction:LongWord;
|
GPIO function for the RXD line |
CTSFunction:LongWord;
|
GPIO function for the CTS line |
RTSFunction:LongWord;
|
GPIO function for the RTS line |
Start:LongWord;
|
Index of first available buffer entry |
Count:LongWord;
|
Number of available entries in the buffer |
Buffer:array[0..(BCM2711_UART0_RX_BUFFER_SIZE - 1)] of Word;
|
Buffer for received data (Includes data and status) |
Statistics Properties | |
InterruptCount:LongWord;
|
Number of interrupt requests received by the device |
BCM2711 UART1
PBCM2711UART1Device = ^TBCM2711UART1Device;
TBCM2711UART1Device = record
UART Properties | |
UART:TUARTDevice;
|
|
BCM2711 Properties | |
BCM2711 EMMC0/EMMC2 (SDHCI)
PBCM2711EMMC0Host = ^TBCM2711EMMC0Host;
TBCM2711EMMC0Host = record
SDHCI Properties | |
SDHCI:TSDHCIHost;
|
|
BCM2711 Properties | |
Id:LongWord;
|
|
IRQ:LongWord;
|
|
FIQ:LongBool;
|
|
SDIO:LongBool;
|
|
PowerId:LongWord;
|
|
ClockId:LongWord;
|
|
WriteDelay:LongWord;
|
|
DelayClock:LongWord;
|
|
ShadowRegister:LongWord;
|
BCM2711 system clock
PBCM2711SystemClock = ^TBCM2711SystemClock;
TBCM2711SystemClock = record
Clock Properties | |
Clock:TClockDevice;
|
|
BCM2711 Properties | |
BCM2711 ARM clock
PBCM2711ARMClock = ^TBCM2711ARMClock;
TBCM2711ARMClock = record
Clock Properties | |
Clock:TClockDevice;
|
|
BCM2711 Properties | |
CoreClock:LongWord;
|
Core clock rate |
BCM2711 ARM timer
PBCM2711ARMTimer = ^TBCM2711ARMTimer;
TBCM2711ARMTimer = record
Timer Properties | |
Timer:TTimerDevice;
|
|
BCM2711 Properties | |
CoreClock:LongWord;
|
Core clock rate |
Statistics Properties | |
InterruptCount:LongWord;
|
Number of interrupt requests received by the device |
BCM2711 local timer
PBCM2711LocalTimer = ^TBCM2711LocalTimer;
TBCM2711LocalTimer = record
Timer Properties | |
Timer:TTimerDevice;
|
|
BCM2711 Properties | |
CoreClock:LongWord;
|
Core clock rate |
Statistics Properties | |
InterruptCount:LongWord;
|
Number of interrupt requests received by the device |
BCM2711 random
PBCM2711Random = ^TBCM2711Random;
TBCM2711Random = record
Random Properties | |
Random:TRandomDevice;
|
|
BCM2711 Properties | |
BCM2711 mailbox
PBCM2711Mailbox = ^TBCM2711Mailbox;
TBCM2711Mailbox = record
Mailbox Properties | |
Mailbox:TMailboxDevice;
|
|
BCM2711 Properties | |
BCM2711 watchdog
PBCM2711Watchdog = ^TBCM2711Watchdog;
TBCM2711Watchdog = record
Watchdog Properties | |
Watchdog:TWatchdogDevice;
|
|
BCM2711 Properties | |
BCM2711 framebuffer
PBCM2711Framebuffer = ^TBCM2711Framebuffer;
TBCM2711Framebuffer = record
Framebuffer Properties | |
Framebuffer:TFramebufferDevice;
|
|
BCM2711 Properties | |
MultiDisplay:LongBool;
|
|
DisplayNum:LongWord;
|
|
DisplaySettings:TDisplaySettings;
|
Public variables
None defined
Function declarations
Initialization functions
procedure BCM2711Init;
Note | None documented |
---|
BCM2711 SPI0/3/4/5/6 functions
function BCM2711SPI0Start(SPI:PSPIDevice; Mode,ClockRate,ClockPhase,ClockPolarity:LongWord):LongWord;
Note | None documented |
---|
function BCM2711SPI0Stop(SPI:PSPIDevice):LongWord;
Note | None documented |
---|
function BCM2711SPI0WriteRead(SPI:PSPIDevice; ChipSelect:Word; Source,Dest:Pointer; Size,Flags:LongWord; var Count:LongWord):LongWord;
Note | None documented |
---|
function BCM2711SPI0SetMode(SPI:PSPIDevice; Mode:LongWord):LongWord;
Note | None documented |
---|
function BCM2711SPI0SetClockRate(SPI:PSPIDevice; ChipSelect:Word; ClockRate:LongWord):LongWord;
Note | None documented |
---|
function BCM2711SPI0SetClockPhase(SPI:PSPIDevice; ClockPhase:LongWord):LongWord;
Note | None documented |
---|
function BCM2711SPI0SetClockPolarity(SPI:PSPIDevice; ClockPolarity:LongWord):LongWord;
Note | None documented |
---|
function BCM2711SPI0SetSelectPolarity(SPI:PSPIDevice; ChipSelect:Word; SelectPolarity:LongWord):LongWord;
Note | None documented |
---|
procedure BCM2711SPI0ReadFIFO(SPI:PBCM2711SPI0Device);
Note | Called from within the interrupt handler |
---|
procedure BCM2711SPI0WriteFIFO(SPI:PBCM2711SPI0Device);
Note | Called from within the interrupt handler |
---|
function BCM2711SPI0SharedInterruptHandler(Number,CPUID,Flags:LongWord; SPI:PBCM2711SPI0Device):LongWord;
Note | None documented |
---|
procedure BCM2711SPI0DMARequestCompleted(Request:PDMARequest);
Note | None documented |
---|
procedure BCM2711SPI0GetGPIOConfig(SPI:PBCM2711SPI0Device);
Note | None documented |
---|
BCM2711 I2C0/1/2/3/4/5/6/7 functions
function BCM2711I2C0Start(I2C:PI2CDevice; Rate:LongWord):LongWord;
Note | None documented |
---|
function BCM2711I2C0Stop(I2C:PI2CDevice):LongWord;
Note | None documented |
---|
function BCM2711I2C0Read(I2C:PI2CDevice; Address:Word; Buffer:Pointer; Size:LongWord; var Count:LongWord):LongWord;
Note | None documented |
---|
function BCM2711I2C0Write(I2C:PI2CDevice; Address:Word; Buffer:Pointer; Size:LongWord; var Count:LongWord):LongWord;
Note | None documented |
---|
function BCM2711I2C0WriteRead(I2C:PI2CDevice; Address:Word; Initial:Pointer; Len:LongWord; Data:Pointer; Size:LongWord; var Count:LongWord):LongWord;
Note | None documented |
---|
function BCM2711I2C0WriteWrite(I2C:PI2CDevice; Address:Word; Initial:Pointer; Len:LongWord; Data:Pointer; Size:LongWord; var Count:LongWord):LongWord;
Note | None documented |
---|
function BCM2711I2C0SetRate(I2C:PI2CDevice; Rate:LongWord):LongWord;
Note | None documented |
---|
function BCM2711I2C0SetAddress(I2C:PI2CDevice; Address:Word):LongWord;
Note | None documented |
---|
procedure BCM2711I2C0FillFIFO(I2C:PBCM2711I2C0Device);
Note | Called from within the interrupt handler |
---|
procedure BCM2711I2C0DrainFIFO(I2C:PBCM2711I2C0Device);
Note | Called from within the interrupt handler |
---|
function BCM2711I2C0SharedInterruptHandler(Number,CPUID,Flags:LongWord; I2C:PBCM2711I2C0Device):LongWord;
Note | Thread submitting the current request will hold the I2C device lock |
---|
procedure BCM2711I2C0GetGPIOConfig(I2C:PBCM2711I2C0Device);
Note | None documented |
---|
BCM2711 SPI/I2C slave functions
function BCM2711I2CSlaveStart(I2C:PI2CDevice; Rate:LongWord):LongWord;
Note | Not intended to be called directly by applications, use I2CSlaveStart instead.
Rate is not applicable for I2C slave devices |
---|
function BCM2711I2CSlaveStop(I2C:PI2CDevice):LongWord;
Note | Not intended to be called directly by applications, use I2CSlaveStop instead. |
---|
function BCM2711I2CSlaveRead(I2C:PI2CDevice; Address:Word; Buffer:Pointer; Size:LongWord; var Count:LongWord):LongWord;
Note | Not intended to be called directly by applications, use I2CSlaveRead instead.
Address is not applicable for I2C slave devices |
---|
function BCM2711I2CSlaveWrite(I2C:PI2CDevice; Address:Word; Buffer:Pointer; Size:LongWord; var Count:LongWord):LongWord;
Note | Not intended to be called directly by applications, use I2CSlaveWrite instead.
Address is not applicable for I2C slave devices |
---|
function BCM2711I2CSlaveSetAddress(I2C:PI2CDevice; Address:Word):LongWord;
Note | Not intended to be called directly by applications, use I2CSlaveSetAddress instead. |
---|
BCM2711 DMA functions
function BCM2711DMAHostStart(DMA:PDMAHost):LongWord;
Note | None documented |
---|
function BCM2711DMAHostStop(DMA:PDMAHost):LongWord;
Note | None documented |
---|
function BCM2711DMAHostSubmit(DMA:PDMAHost; Request:PDMARequest):LongWord;
Note | None documented |
---|
function BCM2711DMAHostCancel(DMA:PDMAHost; Request:PDMARequest):LongWord;
Note | None documented |
---|
procedure BCM2711DMAInterruptHandler(Channel:PBCM2711DMAChannel);
Note | None documented |
---|
procedure BCM2711DMA40InterruptHandler(Channel:PBCM2711DMAChannel);
Note | None documented |
---|
procedure BCM2711DMASharedInterruptHandler(DMA:PBCM2711DMAHost);
Note | None documented |
---|
procedure BCM2711DMARequestComplete(Channel:PBCM2711DMAChannel);
Note | None documented |
---|
function BCM2711DMAPeripheralToDREQ(Peripheral:LongWord):LongWord;
Note | None documented |
---|
procedure BCM2711DMADataToControlBlock(Request:PDMARequest; Data:PDMAData; Block:PBCM2838DMAControlBlock; Bulk,Lite:Boolean);
Note | None documented |
---|
procedure BCM2711DMA40DataToControlBlock(Request:PDMARequest; Data:PDMAData; Block:PBCM2838DMA40ControlBlock);
Note | None documented |
---|
BCM2711 PWM0/1 functions
function BCM2711PWM0Start(PWM:PPWMDevice):LongWord;
Note | None documented |
---|
function BCM2711PWM0Stop(PWM:PPWMDevice):LongWord;
Note | None documented |
---|
function BCM2711PWM0Write(PWM:PPWMDevice; Value:LongWord):LongWord;
Note | None documented |
---|
function BCM2711PWM0SetGPIO(PWM:PPWMDevice; GPIO:LongWord):LongWord;
Note | None documented |
---|
function BCM2711PWM0ResetGPIO(PWM:PPWMDevice; GPIO:LongWord):LongWord;
Note | None documented |
---|
function BCM2711PWM0SetMode(PWM:PPWMDevice; Mode:LongWord):LongWord;
Note | None documented |
---|
function BCM2711PWM0SetRange(PWM:PPWMDevice; Range:LongWord):LongWord;
Note | None documented |
---|
function BCM2711PWM0SetFrequency(PWM:PPWMDevice; Frequency:LongWord):LongWord;
Note | None documented |
---|
function BCM2711PWM0SetPolarity(PWM:PPWMDevice; Polarity:LongWord):LongWord;
Note | None documented |
---|
function BCM2711PWM0Configure(PWM:PPWMDevice; DutyNS,PeriodNS:LongWord):LongWord;
Note | None documented |
---|
function BCM2711PWM0ClockStart(PWM:PPWMDevice; Frequency:LongWord):LongWord;
Note | None documented |
---|
function BCM2711PWM0ClockStop(PWM:PPWMDevice):LongWord;
Note | None documented |
---|
function BCM2711PWM0ClockEnabled(PWM:PPWMDevice):Boolean;
Note | None documented |
---|
BCM2711 GPIO functions
function BCM2711GPIOStart(GPIO:PGPIODevice):LongWord;
Note | None documented |
---|
function BCM2711GPIOStop(GPIO:PGPIODevice):LongWord;
Note | None documented |
---|
function BCM2711GPIORead(GPIO:PGPIODevice; Reg:LongWord):LongWord;
Note | None documented |
---|
procedure BCM2711GPIOWrite(GPIO:PGPIODevice; Reg,Value:LongWord);
Note | None documented |
---|
function BCM2711GPIOInputGet(GPIO:PGPIODevice; Pin:LongWord):LongWord;
Note | None documented |
---|
function BCM2711GPIOInputWait(GPIO:PGPIODevice; Pin,Trigger,Timeout:LongWord):LongWord;
Note | None documented |
---|
function BCM2711GPIOInputEvent(GPIO:PGPIODevice; Pin,Trigger,Flags,Timeout:LongWord; Callback:TGPIOCallback; Data:Pointer):LongWord;
Note | None documented |
---|
function BCM2711GPIOInputCancel(GPIO:PGPIODevice; Pin:LongWord):LongWord;
Note | None documented |
---|
function BCM2711GPIOOutputSet(GPIO:PGPIODevice; Pin,Level:LongWord):LongWord;
Note | None documented |
---|
function BCM2711GPIOPullGet(GPIO:PGPIODevice; Pin:LongWord):LongWord;
Note | None documented |
---|
function BCM2711GPIOPullSelect(GPIO:PGPIODevice; Pin,Mode:LongWord):LongWord;
Note | None documented |
---|
function BCM2711GPIOFunctionGet(GPIO:PGPIODevice; Pin:LongWord):LongWord;
Note | None documented |
---|
function BCM2711GPIOFunctionSelect(GPIO:PGPIODevice; Pin,Mode:LongWord):LongWord;
Note | None documented |
---|
procedure BCM2711GPIOInterruptHandler(Bank:PBCM2711GPIOBank);
Note | None documented |
---|
procedure BCM2711GPIOEventTrigger(Pin:PGPIOPin);
Note | None documented |
---|
procedure BCM2711GPIOEventTimeout(Event:PGPIOEvent);
Note | None documented |
---|
BCM2711 UART0/2/3/4/5 functions
function BCM2711UART0Open(UART:PUARTDevice; BaudRate,DataBits,StopBits,Parity,FlowControl:LongWord):LongWord;
Note | Not intended to be called directly by applications, use UARTDeviceOpen instead. |
---|
function BCM2711UART0Close(UART:PUARTDevice):LongWord;
Note | Not intended to be called directly by applications, use UARTDeviceClose instead. |
---|
function BCM2711UART0Read(UART:PUARTDevice; Buffer:Pointer; Size,Flags:LongWord; var Count:LongWord):LongWord;
Note | Not intended to be called directly by applications, use UARTDeviceRead instead. |
---|
function BCM2711UART0Write(UART:PUARTDevice; Buffer:Pointer; Size,Flags:LongWord; var Count:LongWord):LongWord;
Note | Not intended to be called directly by applications, use UARTDeviceWrite instead. |
---|
function BCM2711UART0GetStatus(UART:PUARTDevice):LongWord;
Note | Not intended to be called directly by applications, use UARTDeviceGetStatus instead. |
---|
function BCM2711UART0SetStatus(UART:PUARTDevice; Status:LongWord):LongWord;
Note | Not intended to be called directly by applications, use UARTDeviceSetStatus instead. |
---|
function BCM2711UART0SharedInterruptHandler(Number,CPUID,Flags:LongWord; UART:PUARTDevice):LongWord;
Note | Not intended to be called directly by applications |
---|
procedure BCM2711UART0Receive(UART:PUARTDevice);
Note | Not intended to be called directly by applications |
---|
procedure BCM2711UART0Transmit(UART:PUARTDevice);
Note | Not intended to be called directly by applications |
---|
procedure BCM2711UART0EnableInterrupt(UART:PBCM2711UART0Device; Interrupt:LongWord);
UART | The BCM2711 UART0 device to enable the interrupt for |
---|---|
Interrupt | The interrupt to enable |
Note | Caller must hold the UART lock |
procedure BCM2711UART0DisableInterrupt(UART:PBCM2711UART0Device; Interrupt:LongWord);
UART | The BCM2711 UART0 device to disable the interrupt for |
---|---|
Interrupt | The interrupt to disable |
Note | Caller must hold the UART lock |
procedure BCM2711UART0GetGPIOConfig(UART:PBCM2711UART0Device);
Note | None documented |
---|
BCM2711 EMMC0 (SDHCI) functions
function BCM2711EMMC0HostStart(SDHCI:PSDHCIHost):LongWord;
Note | Not intended to be called directly by applications, use SDHCIHostStart instead. |
---|
function BCM2711EMMC0HostStop(SDHCI:PSDHCIHost):LongWord;
Note | Not intended to be called directly by applications, use SDHCIHostStop instead. |
---|
function BCM2711EMMC0HostLock(SDHCI:PSDHCIHost):LongWord;
Note | Not intended to be called directly by applications, use SDHCIHostLock instead. |
---|
function BCM2711EMMC0HostUnlock(SDHCI:PSDHCIHost):LongWord;
Note | Not intended to be called directly by applications, use SDHCIHostUnlock instead. |
---|
function BCM2711EMMC0HostSignal(SDHCI:PSDHCIHost; Semaphore:TSemaphoreHandle):LongWord;
Note | Not intended to be called directly by applications, use SDHCIHostSignal instead. |
---|
function BCM2711EMMC0HostReadByte(SDHCI:PSDHCIHost; Reg:LongWord):Byte;
Note | Not intended to be called directly by applications, use SDHCIHostReadByte instead. |
---|---|
Note | The Broadcom document BCM2835-ARM-Peripherals page 66 states the following: Contrary to Arasans documentation the EMMC module registers can only be accessed as 32 bit registers. i.e. The two LSBs of the address are always zero. For this reason this code must simulate Byte and Word reads using LongWord reads. |
function BCM2711EMMC0HostReadWord(SDHCI:PSDHCIHost; Reg:LongWord):Word;
Note | Not intended to be called directly by applications, use SDHCIHostReadWord instead. |
---|---|
Note | The Broadcom document BCM2835-ARM-Peripherals page 66 states the following: Contrary to Arasans documentation the EMMC module registers can only be accessed as 32 bit registers. i.e. The two LSBs of the address are always zero. For this reason this code must simulate Byte and Word reads using LongWord reads. |
function BCM2711EMMC0HostReadLong(SDHCI:PSDHCIHost; Reg:LongWord):LongWord;
Note | Not intended to be called directly by applications, use SDHCIHostReadLong instead. |
---|
procedure BCM2711EMMC0HostWriteByte(SDHCI:PSDHCIHost; Reg:LongWord; Value:Byte);
Note | Not intended to be called directly by applications, use SDHCIHostWriteByte instead. |
---|---|
Note | The Broadcom document BCM2835-ARM-Peripherals page 66 states the following: Contrary to Arasans documentation the EMMC module registers can only be accessed as 32 bit registers. i.e. The two LSBs of the address are always zero. For this reason this code must simulate Byte and Word writes using LongWord writes. |
procedure BCM2711EMMC0HostWriteWord(SDHCI:PSDHCIHost; Reg:LongWord; Value:Word);
Note | Not intended to be called directly by applications, use SDHCIHostWriteWord instead. |
---|---|
Note | The Broadcom document BCM2835-ARM-Peripherals page 66 states the following: Contrary to Arasans documentation the EMMC module registers can only be accessed as 32 bit registers. i.e. The two LSBs of the address are always zero. For this reason this code must simulate Byte and Word writes using LongWord writes. |
procedure BCM2711EMMC0HostWriteLong(SDHCI:PSDHCIHost; Reg:LongWord; Value:LongWord);
Note | Not intended to be called directly by applications, use SDHCIHostWriteLong instead. |
---|---|
Note | The source code of U-Boot and Linux kernel drivers have this comment The Arasan has a bugette whereby it may lose the content of successive writes to registers that are within two SD-card clock cycles of each other (a clock domain crossing problem). It seems, however, that the data register does not have this problem (which is just as well - otherwise we'd have to nobble the DMA engine too). For this reason this code must delay after each write to the registers. |
function BCM2711EMMC0SharedInterruptHandler(Number,CPUID,Flags:LongWord; SDHCI:PSDHCIHost):LongWord;
Note | Not intended to be called directly by applications |
---|
function BCM2711EMMC0SetupInterrupts(SDHCI:PSDHCIHost):LongWord;
Note | Not intended to be called directly by applications |
---|
function BCM2711EMMC0DeviceGetCardDetect(MMC:PMMCDevice):LongWord;
Note | Not intended to be called directly by applications, use MMCDeviceGetCardDetect instead. |
---|
BCM2711 system clock functions
function BCM2711SystemClockRead(Clock:PClockDevice):LongWord;
Note | Not intended to be called directly by applications, use ClockDeviceRead instead. |
---|
function BCM2711SystemClockRead64(Clock:PClockDevice):Int64;
Note | Not intended to be called directly by applications, use ClockDeviceRead64 instead. |
---|
BCM2711 ARM clock functions
function BCM2711ARMClockStart(Clock:PClockDevice):LongWord;
Note | Not intended to be called directly by applications, use ClockDeviceStart instead. |
---|
function BCM2711ARMClockStop(Clock:PClockDevice):LongWord;
Note | Not intended to be called directly by applications, use ClockDeviceStop instead. |
---|
function BCM2711ARMClockRead(Clock:PClockDevice):LongWord;
Note | Not intended to be called directly by applications, use ClockDeviceRead instead. |
---|
function BCM2711ARMClockRead64(Clock:PClockDevice):Int64;
Note | Not intended to be called directly by applications, use ClockDeviceRead64 instead. |
---|
function BCM2711ARMClockSetRate(Clock:PClockDevice; Rate:LongWord):LongWord;
Note | Not intended to be called directly by applications, use ClockDeviceSetRate instead. |
---|
BCM2711 ARM timer functions
function BCM2711ARMTimerStart(Timer:PTimerDevice):LongWord;
Note | Not intended to be called directly by applications, use TimerDeviceStart instead. |
---|
function BCM2711ARMTimerStop(Timer:PTimerDevice):LongWord;
Note | Not intended to be called directly by applications, use TimerDeviceStop instead. |
---|
function BCM2711ARMTimerRead64(Timer:PTimerDevice):Int64;
Note | Not intended to be called directly by applications, use TimerDeviceRead64 instead. |
---|
function BCM2711ARMTimerWait(Timer:PTimerDevice):LongWord;
Note | Not intended to be called directly by applications, use TimerDeviceWait instead. |
---|
function BCM2711ARMTimerEvent(Timer:PTimerDevice; Flags:LongWord; Callback:TTimerCallback; Data:Pointer):LongWord;
Note | Not intended to be called directly by applications, use TimerDeviceEvent instead. |
---|
function BCM2711ARMTimerCancel(Timer:PTimerDevice):LongWord;
Note | Not intended to be called directly by applications, use TimerDeviceCancel instead. |
---|
function BCM2711ARMTimerSetRate(Timer:PTimerDevice; Rate:LongWord):LongWord;
Note | Not intended to be called directly by applications, use TimerDeviceSetRate instead. |
---|
function BCM2711ARMTimerSetInterval(Timer:PTimerDevice; Interval:LongWord):LongWord;
Note | Not intended to be called directly by applications, use TimerDeviceSetInterval instead. |
---|
procedure BCM2711ARMTimerInterruptHandler(Timer:PTimerDevice);
Note | Not intended to be called directly by applications |
---|
procedure BCM2711ARMTimerEventTrigger(Timer:PTimerDevice);
Note | Not intended to be called directly by applications |
---|
BCM2711 random functions
function BCM2711RandomStart(Random:PRandomDevice):LongWord;
Note | None documented |
---|
function BCM2711RandomStop(Random:PRandomDevice):LongWord;
Note | None documented |
---|
function BCM2711RandomReadLongWord(Random:PRandomDevice):LongWord;
Note | None documented |
---|
BCM2711 watchdog functions
function BCM2711WatchdogStart(Watchdog:PWatchdogDevice):LongWord;
Note | None documented |
---|
function BCM2711WatchdogStop(Watchdog:PWatchdogDevice):LongWord;
Note | None documented |
---|
function BCM2711WatchdogRefresh(Watchdog:PWatchdogDevice):LongWord;
Note | None documented |
---|
function BCM2711WatchdogGetRemain(Watchdog:PWatchdogDevice):LongWord;
Note | None documented |
---|
BCM2711 framebuffer functions
function BCM2711FramebufferAllocate(Framebuffer:PFramebufferDevice; Properties:PFramebufferProperties):LongWord;
Note | Not intended to be called directly by applications, use FramebufferDeviceAllocate instead. |
---|
function BCM2711FramebufferRelease(Framebuffer:PFramebufferDevice):LongWord;
Note | Not intended to be called directly by applications, use FramebufferDeviceRelease instead. |
---|
function BCM2711FramebufferBlank(Framebuffer:PFramebufferDevice; Blank:Boolean):LongWord;
Note | Not intended to be called directly by applications, use FramebufferDeviceBlank instead. |
---|
function BCM2711FramebufferCommit(Framebuffer:PFramebufferDevice; Address:PtrUInt; Size,Flags:LongWord):LongWord;
Note | Not intended to be called directly by applications, use FramebufferDeviceCommit instead. |
---|
function BCM2711FramebufferWaitSync(Framebuffer:PFramebufferDevice):LongWord;
Note | Not intended to be called directly by applications, use FramebufferDeviceWaitSync instead. |
---|
function BCM2711FramebufferSetOffsetEx(Framebuffer:PFramebufferDevice; X,Y:LongWord; Pan,Switch:Boolean):LongWord;
Note | Not intended to be called directly by applications, use FramebufferDeviceSetOffsetEx instead. |
---|
function BCM2711FramebufferGetPalette(Framebuffer:PFramebufferDevice; Palette:PFramebufferPalette):LongWord;
Note | Not intended to be called directly by applications, use FramebufferDeviceGetPalette instead. |
---|
function BCM2711FramebufferSetPalette(Framebuffer:PFramebufferDevice; Palette:PFramebufferPalette):LongWord;
Note | Not intended to be called directly by applications, use FramebufferDeviceSetPalette instead. |
---|
function BCM2711FramebufferSetBacklight(Framebuffer:PFramebufferDevice; Brightness:LongWord):LongWord;
Note | Not intended to be called directly by applications, use FramebufferDeviceSetBacklight instead. |
---|
function BCM2711FramebufferSetCursor(Framebuffer:PFramebufferDevice; Width,Height,HotspotX,HotspotY:LongWord; Image:Pointer; Len:LongWord):LongWord;
Note | Not intended to be called directly by applications, use FramebufferDeviceSetCursor instead. |
---|
function BCM2711FramebufferUpdateCursor(Framebuffer:PFramebufferDevice; Enabled:Boolean; X,Y:LongInt; Relative:Boolean):LongWord;
Note | Not intended to be called directly by applications, use FramebufferDeviceUpdateCursor instead. |
---|
BCM2711 helper functions
function BCM2711SPIGetDescription(Id:LongWord):String;
Id | The Id number of the SPI device (0 to 6) |
---|---|
Return | The correct device description suitable for passing to SPIDeviceFindByDescription |
Note | The Id number supplied to this function may differ from the Ultibo device id value. |
function BCM2711I2CGetDescription(Id:LongWord):String;
Id | The Id number of the I2C device (0 to 7) |
---|---|
Return | The correct device description suitable for passing to I2CDeviceFindByDescription |
Note | The Id number supplied to this function may differ from the Ultibo device id value. |
function BCM2711I2CSlaveGetDescription(Id:LongWord):String;
Id | The Id number of the I2C slave device (Always 0) |
---|---|
Return | The correct device description suitable for passing to I2CSlaveFindByDescription |
Note | The Id number supplied to this function may differ from the Ultibo device id value |
function BCM2711PWMGetDescription(Id,Channel:LongWord):String;
Id | The Id number of the PWM device (0 or 1) |
---|---|
Channel | The channel number of the PWM device (0 or 1) |
Return | The correct device description suitable for passing to PWMDeviceFindByDescription |
Note | The Id number supplied to this function may differ from the Ultibo device id value. |
function BCM2711UARTGetDescription(Id:LongWord):String;
Id | The Id number of the UART device (0 to 5) |
---|---|
Return | The correct device description suitable for passing to UARTDeviceFindByDescription |
Note | The Id number supplied to this function may differ from the Ultibo device id value. |
Return to Unit Reference